Filtered By:
Condition: Alzheimer's

This page shows you your search results in order of date. This is page number 8.

Order by Relevance | Date

Total 992 results found since Jan 2013.

Cellular Senesence, a Key Target in the Treatment of Aging
Scores of animal studies provide compelling evidence for cellular senescence to contribute meaningfully to many age-related conditions, and yet more such studies demonstrate rapid and sizable rejuvenation via targeted removal of senescent cells in old animals using varieties of senolytic therapy. Senescent cells are created constantly in the body, the result of cells reaching the Hayflick limit on replication, tissue injury, or encountering cellular damage or toxicity. When an individual is young, these newly senescent cells are near all removed by a combination of programmed cell death and the actions of the immune system...
Source: Fight Aging! - August 10, 2022 Category: Research Authors: Reason Tags: Medicine, Biotech, Research Source Type: blogs

Klotho in the Pathology of Aging
Klotho is a longevity-associated protein; more of it slows aging, less of it accelerates aging, at least in animal studies. While researchers have spent considerable effort investigating the effects of klotho on the brain, as it improves cognitive function, it seems likely that its effects arise via improved kidney function in old age. Loss of kidney function, and thus clearance of metabolic toxins and waste from the bloodstream, is harmful to tissues throughout the body. Manipulation of klotho may be a good way to assess just how much harm is generated by the age-related decline of the kidneys. The subject of thi...
Source: Fight Aging! - August 10, 2022 Category: Research Authors: Reason Tags: Daily News Source Type: blogs

Fight Aging! Newsletter, August 8th 2022
In conclusion, aging research will benefit from a better definition of how specific regulators map onto age-dependent change, considered on a phenotype-by-phenotype basis. Resolving some of these key questions will shed more light on how tractable (or intractable) the biology of aging is. Does Acarbose Extend Life in Short Lived Species via Gut Microbiome Changes? https://www.fightaging.org/archives/2022/08/does-acarbose-extend-life-in-short-lived-species-via-gut-microbiome-changes/ Acarbose is one of a few diabetes medications shown to modestly slow aging in short-lived species. Researchers here take a ...
Source: Fight Aging! - August 7, 2022 Category: Research Authors: Reason Tags: Newsletters Source Type: blogs

Are Pharmacological Approaches to Slow Aging in Fact Promising?
Today's open access review paper looks over a selection of what I would consider to be largely unpromising small molecules, each with evidence for their ability to slow aging, but very modestly and unreliably in most cases. Looking at the bigger picture, for much of the public it is still surprising to hear that the pace of aging can be adjusted via any form of therapy, so there is probably a role for simple, low-cost small molecule drugs in the process of education that leads to more serious efforts aimed at producing the means of human rejuvenation. Still, entirely too much effort is devoted towards small molecules that ...
Source: Fight Aging! - August 3, 2022 Category: Research Authors: Reason Tags: Medicine, Biotech, Research Source Type: blogs

Fight Aging! Newsletter, August 1st 2022
In this study, we used the recently released Infinium Mouse Methylation BeadChip to compare such epigenetic modifications in C57BL/6 (B6) and DBA/2J (DBA) mice. We observed marked differences in age-associated DNA methylation in these commonly used inbred mouse strains, indicating that epigenetic clocks for one strain cannot be simply applied to other strains without further verification. Interestingly, the CpGs with highest age-correlation were still overlapping in B6 and DBA mice and included the genes Hsf4, Prima1, Aspa, and Wnt3a. Furthermore, Hsf4, Aspa, and Wnt3a revealed highly significant age-associated DNA methyla...
Source: Fight Aging! - July 31, 2022 Category: Research Authors: Reason Tags: Newsletters Source Type: blogs

Aubrey de Grey on Progress in SENS Rejuvenation Research
In this recent interview with Aubrey de Grey touches on a number of areas of progress made by the research and development community in recent years, projects that lead towards rejuvenation therapies based on the Strategies for Engineered Negligible Senescence (SENS). In the SENS view, supported by a very sizable literature accumulated over the past century, aging is caused by underlying processes of damage accumulation. What we think of as aging is a diverse collection of downstream consequences of that damage. Periodically repairing the underlying damage, allowing the normal maintenance of the body to continue as it woul...
Source: Fight Aging! - July 25, 2022 Category: Research Authors: Reason Tags: Daily News Source Type: blogs

Fight Aging! Newsletter, July 25th 2022
This study further demonstrates that AMD is not a single condition or an isolated disease, but is often a signal of systemic malfunction which could benefit from targeted medical evaluation in addition to localized eye care." Microglia in the Aging Brain, Both Protective and Harmful https://www.fightaging.org/archives/2022/07/microglia-in-the-aging-brain-both-protective-and-harmful/ A growing body of evidence implicates the changing behavior of microglia in the aging of the brain and onset of neurodegeneration. Microglia are analogous to macrophages, innate immune cells unique to the central nervous syst...
Source: Fight Aging! - July 24, 2022 Category: Research Authors: Reason Tags: Newsletters Source Type: blogs

Fight Aging! Newsletter, July 18th 2022
In conclusion, we show that PVS morphology in mice is variable and that the structure and function of pia suggests a previously unrecognized role in regulating CSF transport and amyloid clearance in aging and disease. Reversing Ovarian Fibrosis in Mice https://www.fightaging.org/archives/2022/07/reversing-ovarian-fibrosis-in-mice/ Researchers here provide evidence for ovarian fibrosis to be an important mechanism in limiting the age at which female mammals can remain fertile. Interestingly, existing antifibrotic drugs can produce some reversal of this fibrosis, enough to restore ovulation in mice. Fibros...
Source: Fight Aging! - July 17, 2022 Category: Research Authors: Reason Tags: Newsletters Source Type: blogs

Targeting the Biology of Aging is a New Era in the Treatment of Age-Related Disease
The editorial here is focused on Alzheimer's disease specifically, but the sentiments expressed apply equally to all age-related diseases. We are entering a new era, in which the research and development community stops trying to treat the symptoms of age-related disease and increasingly focuses on causes of age-related diseases. These conditions are in no way separate from the underlying mechanisms of aging: every age related disease is a manifestation of aging, and a consequence of underlying processes of aging that can be targeted, slowed, reversed. While advocates for aging research have been saying this for decades, t...
Source: Fight Aging! - July 13, 2022 Category: Research Authors: Reason Tags: Daily News Source Type: blogs

Fight Aging! Newsletter, July 11th 2022
In this study we employ a transcriptome-wide and multi-tissue approach to analyze the influence of both LTDR and short-term DR (STDR) at old age on the aging phenotype. We were able to characterize a common transcriptional gene network driving inflammaging in most of the analyzed tissues. This network is characterized by chromatin opening and upregulation in the transcription of innate immune system receptors and by activation of interferon signaling through interferon regulatory factors, inflammatory cytokines, and Stat1-mediated transcription. We also found that both DR interventions ameliorate this inflammaging phenotyp...
Source: Fight Aging! - July 10, 2022 Category: Research Authors: Reason Tags: Newsletters Source Type: blogs

Innate Immune Activation as a Contributing Cause of Inflammaging, Reduced by Calorie Restriction
In this study we employ a transcriptome-wide and multi-tissue approach to analyze the influence of both LTDR and short-term DR (STDR) at old age on the aging phenotype. We were able to characterize a common transcriptional gene network driving inflammaging in most of the analyzed tissues. This network is characterized by chromatin opening and upregulation in the transcription of innate immune system receptors and by activation of interferon signaling through interferon regulatory factors, inflammatory cytokines, and Stat1-mediated transcription. We also found that both DR interventions ameliorate this inflammaging phenotyp...
Source: Fight Aging! - July 4, 2022 Category: Research Authors: Reason Tags: Medicine, Biotech, Research Source Type: blogs

Fight Aging! Newsletter, July 4th 2022
This study showed that centenarians had very specific changes in CD4+ T cell populations, which were manifested by an elevated Th17/Treg ratio in vivo, as well as a changed secretory phenotype. Although the T cells of centenarians cannot resist the aging-related expression of proinflammatory genes, their secretory phenotype was altered, explaining the relatively low level of inflammation in centenarians. These results suggested the presence of a mechanism to ameliorate inflammaging in centenarians. This may be achieved by reversing the imbalance of Th17/Treg cells and reducing pro-inflammatory cytokines. Longevit...
Source: Fight Aging! - July 3, 2022 Category: Research Authors: Reason Tags: Newsletters Source Type: blogs

Fight Aging! Newsletter, June 20th 2022
This study showed a negative relationship between the gaps and the number of senescence cells. Moreover, we found a similar reduction in 30-month-old naturally and 7-month-old D-gal-induced aging rats. Given these consistent data from different eukaryotic organisms, it suggests that the Youth-DNA-GAP is a marker of phenotype-related aging degree Towards Scaffold-Based Regeneration of Dental Pulp https://www.fightaging.org/archives/2022/06/towards-scaffold-based-regeneration-of-dental-pulp/ Researchers are working towards the ability to regenerate the dental pulp inside teeth. Full regeneration of teeth h...
Source: Fight Aging! - June 19, 2022 Category: Research Authors: Reason Tags: Newsletters Source Type: blogs

Fight Aging! Newsletter, June 13th 2022
In conclusion, long-term cumulative BP was associated with subsequent cognitive decline, dementia risk, and all-cause mortality in cognitively healthy adults aged ≥50 years. Efforts are required to control long-term systolic BP and pulse pressure and to maintain adequate diastolic BP. Longer-Lived Mammals Tend to Have Lower Expression of Inflammation-Related Genes https://www.fightaging.org/archives/2022/06/longer-lived-mammals-tend-to-have-lower-expression-of-inflammation-related-genes/ Researchers here make a few interesting observations on gene expression data from a range of mammalian species with ...
Source: Fight Aging! - June 12, 2022 Category: Research Authors: Reason Tags: Newsletters Source Type: blogs

Fight Aging! Newsletter, June 6th 2022
This study examines evidence suggesting that mitochondrial dysfunction plays a significant early impact on AD pathology. Although mitochondrial dysfunction is a typical indication of Alzheimer's disease, it is unclear whether the cellular systems that maintain mitochondrial integrity malfunction, aggravating mitochondrial pathology. Different levels of vigilance and preventive methods are used to reduce mitochondrial damage and efficiently destroy faulty mitochondria to maintain the mitochondrial equilibrium. The form and function of mitochondria are regulated by mitochondrial fusion and fission. In contrast, mitoch...
Source: Fight Aging! - June 5, 2022 Category: Research Authors: Reason Tags: Newsletters Source Type: blogs